
33rd Scottish Fluid Mechanics Meeting Effects of Curvature Radius Ratio of 90-Degree Pipe Elbow on FIV Signal

 Ahmed. A. Abuhatira¹(<u>a.abuhatira@dundee.ac.uk</u>), Salim. M. Salim², Hussein. A. Hussein³ and Jan. B. Vorstius⁴
^{1,4}School of Science and Engineering, University of Dundee ²College of Engineering, Swansea University
³Operations Department, Waha Oil Company, Tripoli, Libya

28th May 2020

Abstract

Investigation on Flow Induced Vibration (FIV) in pipes is relatively new. Previous publications focused on characterizing the influences of geometric and material properties of a straight pipe. The current study investigates the influence of the curvature radius ratio in a 90-degree pipe elbow for ratios (Rc/D = 1.5, 2, 2.5, 3 and 3.5). Reynolds Stress Model (RSM) is coupled with a finite element structural model to simulate the fluid-structure interaction (FSI) using one-way coupling. The RSM turbulence model and FSI model are validated against published experimental and numerical results [1] [2] [3]. Preliminary results presented in the figure below indicate that vibration signal increases as the curvature ratio decreases in a quadratic manner. This functional relationship can be used as a design tool, and with further application in improving non-intrusive flow measurement techniques.

References

- [1] Sudo, K., Sumida, M., and Hibara, H. "Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90-Degree Bend." *Experiments in Fluids*, Vol. 25, No. 1, 1998, pp. 42–49.
- [2] Kim, J., Yadav, M., and Kim, S. "Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow." *Engineering Applications of Computational Fluid Mechanics*, Vol. 8, No. 2, 2014, pp. 229–239. https://doi.org/10.1080/19942060.2014.11015509.
- [3] Pittard, M. T., Evans, R. P., Maynes, R. D., and Blotter, J. D. "Experimental and Numerical Investigation of Turbulent Flow Induced Pipe Vibration in Fully Developed Flow." *Review of scientific instruments*, Vol. 75, No. 7, 2004, pp. 2393–2401.